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Linear stability analysis of doubly diffusive vertical slot convection
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We examine the linear stability problem for slot convection in which several passive diffusing species are
allowed for. Such systems show multiply diffusive behavior, in which convective instability leads to the
formation of horizontal layers. Our analysis resolves discrepancies found in the literature of the physical
interpretation of the initial instability. Our results are directly compared to existing experimental results,
showing good agreement with the observed initial layer formation, including measured quantities such as layer
thickness. Our results also show the importance of closely monitgaind controlling the horizontal tem-
perature gradient, since the results are highly sensitive to this physical ingr¢&i#863-651X98)05901-7

PACS numbdss): 47.20.Bp

I. INTRODUCTION Gr Gr
(V2 =V b+ 5 xT— 75 C—I($.V2) =0,
In this report we present results of linear stability analyses (2.1)

of the doubly diffusive slot convection problefia—4]; our

goal is to explain the layering seen[i], where the horizon- 1

tal temperature contrast is small and thermal conductivity is (&t— Br VZ)T—J(QS,T):O, (2.2
much larger than the solute diffusivities. In the weakly

driven layering regime, a lateral thermal gradient is balanced 1

by horizontal solute gradients, and a static state can be es- (at— Br VZ)C—J(d),C):O. 2.3
tablished in the interior of the tubéA very small amplitude, e

narrow vertical boundary current is necessary to maintain th(j(f 0)=dfo,0-a,fa,9 is the Jacobian: the thermal

rerr oot e gadens ) e ot shon, g B ST e Son ot o
y P 9 b er Gr=9B.y.d%v? the thermal Prandtl number Pr

systems into the layering regime; thus experiments that do. vik,, and the solute Prandtl number,Prv/«, (thermal

not control temperature differences to the required level Ohayleigh number Ra Grx Pr and solute Rayleigh number

precision may lead to misinterpretation of observed IayeringhaczGrc>< Pr,). Other dimensional constants are the thermal

[6]. . , . , expansion coefficient, the solute volumetric expansion co-
Results from our analysis are consistent with earlier worktricient 8., the thermal diffusivity, , the solute diffusivity

of [1] and[7]. When directly compared to the findings[&f, . the kinematic viscosity, and the gravitational accelera-

our results explam Wh_y large multiple layers first appear sition g. We adopt boundary conditions for impenetrable, no-

multaneously in the middle of the tube, and we explain quansjip vertical walls fixed at constant temperatutEig. 1). We

tltatlvely how smaller |ayers form later, Starting from the approximate the unperturbed Stmebscript “0”) by a static
bottom. Furthermore, we show that the observation reported

in [6] may be explained by triply diffusive slot convection in
the weakly driven regime in the presence of a horizontal
temperature difference as small as 0.1 mK, contrary to the
interpretation presented in that work.

Il. THE EQUATIONS " "

=y
Il
.
=y
Il
<

A. One stably stratified solute

We consider an infinitely tall two-dimensionéD) sys- z
tem filled with incompressible fluid¢the horizontal and ver- o =0 ﬁ\
tical velocitiesu andw, respectively, are related to a stream £ %
function ¢: u=4d,¢ and w=—4d,¢) as shown in Fig. 1,
which we assume to be described by the following nondi-

. . - . . . z=—d/2 z = +d/2
mensional equations within the Boussinesg approximation 7 _7.  AT/2 T =T, —AT/2
[11] [velocities are scaled by/(d/2), lengths byd/2, tem-
perature byAT/2, solute concentration by the vertical con-
centration differencey./2=(d/2)|9,C,|, whered,Cy is the FIG. 1. Conceptual sketch of the vertical slot filled with stably
initial vertical solute gradient, and time by (d/2)?] stratified solute;3.- 9,C,= constan 0.
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state: ¢po=0, To(X,2)=T,—AT/dX, ,Co=—aAT/B.d,
and B.9,Co=<0, whereT, is a reference temperatufte.g.,
room temperatuge As shown in[4] for solute Rayleigh

number Ra>1(°, linear analysis with this quasistatic ap-
proximation gives essentially the same results as those with-

out this approximation(in [5] and [6], Ra>10® because
k.<1078.) The linearized equations are then

Gr Gr,
V2p= V4¢——a T+— 4,C,

16 (2.9
1
o T=d,0+ 5 V7T, (2.5)
Pr
c Gr 3,Cq 1 v2e 26
o —G—rco'?zd)-i-mo"x(ﬁ-f—la—rc . (2.6
In [5] and [6] the Schmidt numbeH.=k./«x.=Pr./Pr is

BRIEF REPORTS

respectively; these two lateral gradients combine to balance
the horizontal temperature gradient.

lll. NUMERICS

We use the spectral methpti2,13 to solve the equations
presented in the previous section. We assumeanepen-
dence, and expand spatial terms in Fourier-Chebychev series
(Chebychev inx and Fourier inz). On introducing an auxil-
iary function w=V?¢ to reduce the order of differentiation
and thus retain numerical accuracy, we arrive at the general-
ized eigenvalue equation

A-X=\B-X, (3.1

whereA andB are square matrixes obtained from the equa-
tions in the previous section, amdis a vector composed of

much larger than 1 (£6-1¢F); thus one may consider the ¢, o, T, C, andS. The matrixA is a function of control

temperature to remain unperturbed during the entire experparameters

ment, and Eqs(2.4)—(2.6) can be simplified to read

aV2p= V4¢+ — a C, (2.7

o= S g gy %S0 o L g 2.8
2 —G—rcf7z¢> m@@ﬁ Pr. : (2.9

In the case where solutg, is neutrally stratified, we obtain

[C scaled bylaAT/(28,)|]

V2p= V4¢+— 4,C, (2.9

1
8,C=*d,p+ — V3C, (2.10
Pr;

where + is for 8.>0 and— is for 8.<0.

B. Two stably stratified solutes

We now add one more stabilizing solute into our syste
as done in the experiments [#]. The two solutes are de-

noted byC andS, scaled by the vertical concentration dif-

ferencey.=(d/2)|9,Co| and y,=(d/2)|9,S,|, respectively.
With the same scalings as in previous cases, we fiavhe
limiting case where the two Schmidt numbefs = k;/ k.

=Pr/P¢ andH¢= k/ ks= Pr/Pr, are both much larger than 1
Grg Gr,
\V2p= V4¢+—a S+ — 16 ,C, (2.11)
S= or V23S, 2.1
at_G_rcPr z¢ (9X¢+_ (2)
Gr
HWC= o It 5o VZC (2.13

Coefficients of the first terms on the right-hand side of Eqsand the parameter values Gr/&r—0.18, Pg=10,

(2.12 and(2.13 are the initial lateral gradients & andC,

(Gr,GriGrPr,Pg) for Egs. (2.49-(2.6),
(Gr,Gr/Gg,Pr) for Egs. (2.7 and (2.8, and
(Gr/Gr.,Gr,,Grg,Pr.,Pr) for Egs.(2.11)—(2.13. Boundary
conditions ¢=d,¢p=T=09,C=09,5=0|,—~, are incorpo-
rated into Eq.(3.1) using the tau approximatiofil3]. We
solve this equatioriwith the solver from the.APACK pack-
age in the full parameter space to find neutral stability
curves. Our numerical solutions exhibit good resolution
when we increase the number of modes., the spectrum
shows power-law decay and remains flat at the highey end
and the convergence is satisfactory when we use as few
modes as 32.

IV. RESULTS

We examine two cases: first, the “creaming emulsion”
experiments[5], where 8.=—0.27<0, Pr=7.5, and Py
=10°-10'>1; second, the “sedimenting polystyrene” ex-
periments of[6], for which 8.=0.054, P=7.5, and Py
~2.563x1°. The lower limit on Pg(=10°) for the first
case is obtained when, is the Brownian diffusivity[14];
the upper limit &107) comes from the results dB] «.

m_k’ aVy [with k' an empirical coefficient of orde@(l)]

and from[5] that the creaming velocity/,=0.26um s *

and the radius of the colloids= 0.6 um. In the second case,
we presume polystyrene spheres of diameter.091um
[6], and adopt the Brownian diffusivity fok...

A. “Creaming emulsion”: One stably stratified solute

First for 9,C,>0, we present calculations carried out for
values of the control parameters lying in the range explored
by the laboratory experiment@.= —0.27, Pg=10F°-10,
»=0.01 cn? s~ ! for water, and the ratifGr/Gr| in the range
0.1-1.0. Regardless of whether thermal diffusion is included
in the equations, we find that the critical Grashof nhumbers
and critical vertical wave numbers are almost the same for
Pr,=10°—10; thus we show(Fig. 2) the neutral stability
curve for calculations of Eqg92.4)—(2.6) using 32 modes
Pr

=vlk,=7.5. In Fig. 38 we show the marginal stability



57 BRIEF REPORTS 1185

100 T T L e T

10000.0 T T T
(a)

or 1000.0 £ Ra=7.6175(~Ra )*™/(H 1)

60— I
L 100.0F
UNSTABLE F

Gr
Ra

40
: 10.0F

20 -
I STABLE iy 1.0

olLb vy v v v b v e e e e ey - . L
30 40 50 60 70 80 01 i
Vertical Waove Number 2k

FIG. 2. Plot of the neutral stability curve for the system of Egs.
(2.49—-(2.6), for GriGr,=—0.18, Pr=10", Pr=v/k,=7.5;, 32 100 [T T T T T
modes were use(R Xk because we scale the length #42). The .
corresponding critical wavelength is,;;=1.47 mm and critical lat-
eral temperature difference 5T.;=10.7 mK for a tube widthd
=1cm in [5]. The lateral temperature difference [B] is 10
+2 mK; the observed small strata near the bottom of the tube hav
thickness 2 mm.

s

2k_,=1.1081(=Ra )"

curve in the Ra- Ra, plane for Pe=7.5, Pg=10’; Fig. 3(b)
shows the critical wave number as a function of. RRa
=GrxPr, Ra=Gr X Pr,). In the case 08,Cy=0, results of I
our calculation show that for all values of Rr10f— 10/, the i
critical wavelength\.;;~2.5cm ford=1cm [5] and the
critical Grashof numbers are very sméBr,~10 2 for Pr, P I—— pp: o =70
= 106) —Rclc

The results above can explain layering observedsin
Some large layers of thickness 2—-3 cm appear first in the g 3. Panel(a): Marginal stability curve for Pr7.5, Pg
middle of the tube; this is easily understood as a conse= 17, H.=Ppr./Pr=1.3x 10°; 32 modes were used in calculating
quence of the fact that the suspension is nearly neutrallgqg. (3.1. The best-fit line is given by Ra&7.6175<
stratified there, and hence layers form first due to the small—Ra,)?#°¥(H.—1), consistent with results df7], Ra=5.8977
critical lateral temperature contrast. Smallé+2 mnj strata X (—Ra,)®%(H.—1). For a fixed Ra(fixed lateral temperature
appear near the bottom of the tube because, while the tendifference, the system is stable for Rg.>—Ra, ¢y and unstable
perature difference is kept constant throughout the experitor —R&<—Rg ¢t where —Ra = (RaXx(H,
ment (fixed Rq), the emulsion floats upwards at a creaming_1)/7-6175)1/0'8204 Panel(b): Critical wave number Xk as a

; — . ; .« i« function of —Ra. (2xk; because we scale lengths by the half slot
velocity of 0.26um s ™! from the bottom; and since this is . et T _ 0.1741
much faster than the diffusion velocity(=«./I, width). The best-fit line is given by 2 ke =1.1081x(~Ra) '

o . consistent with results dfL] and[7], ke;=1.3048< (— Ra,)*C.
=10 *-10 3 um s %, wherel., the characteristic length, is dt] and[7, ke (~Ra)

1-2 mnj, one would expect a vertical discontinuity in the ) o _

density of the emulsion during the creaming process near the Finally, we remark that it is not straightforward to apply
bottom. Thus, the vertical gradient of the concentration fieldhe results of linear stability analyses [ib—4] to the layer
behaves like a delta function at this discontinuity. At theformation near horizontal boundaries, where both the vertical
peak of the vertical gradierithe discontinuity, the system is  saline flux and the vertical flow fall to zero. The assumed
stable because the solute Rayleigh numbeRa, is very initial vertical boundary currerfrequired to sustain the inte-
large there. However, diffusion of the solute will smooth outrior lateral solute gradieptncreases in amplitude as the sol-
the vertical gradientthus decreasing the solute Rayleigh ute Rayleigh numbeiRa,| decreasef2—4]. Thus the unper-
number —Ra, at the discontinuity on a time scale ot  turbed flow cannot be purely vertical near the horizontal
~12/(3m%k.) [14], and as soon as the gradient becomes conboundaries whergRa,| begins to decreadd 0], and the ap-
stant overl, and has a value such thatRa, crosses the pearance of layers in these regidris9 may not be com-
marginal curve, instability sets in and the layering beginspletely explained by the linear stability analysis where the
Adopting k.=(1-2)x 10 ° cn? s andl.~1 mm, we ob- initial flow is assumed verticd2—4]. In the case of a cream-
tain a time scale of 2.0—4.0 d for small strata to appear neang emulsion, this assumption holds well at the concentration
the bottom of the column, in good agreement with the ex-discontinuity where small strata begin to appgsr and the
perimentg5]. comoving creaming velocity of the emulsion further guaran-
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tees that the formation of small strata can only occur near the V. CONCLUSIONS
bottom.
We have examined the linear stability problem for slot
B. “Sedimenting polystyrene”: Two stably stratified solutes convection in which additional stably stratified solutes are
As in Table | of [6], we adoptB.=0.054 and Pr sustained by a narrow vertical boundary current to balance

=2.563<10°. Calculations show that for linearly stratified & imposed lateral temperature gradient. Focusing on the

1.1 um polystyrene and salboth zero concentration at the WeaKly driven regime, we have explained the layering seen

top of the tube and 0.1 wt % at the bottprthe lower bound 1" [5], with estimates for both layer thickness in various lo-

on the lateral temperature contrast for layering is 0.1 mK an§@tions and the time scale for the appearance of small strata,
the critical wavelength is 0.5 cm for a tube width of 0.6 cm, N good agreement with the observations. The demonstration

in good agreement with Siano’s resiiftable | in[6]). The of the remarkabl_y small'horizont_al thermal gradients, Which
salt will remain unperturbed if it is initially uniform; thus Suffice to result in layering, confirms the point addressed in
one expects the layer width observed with a uniform salt®): the (very smal) temperature gradients were most likely
background to be the same as that without €Bétble | in "0t Properly measuredor controlled in the early experi-
[6]). In this case our calculations show that the critical laterafeNts, léading to misinterpretations of the governing phys-

temperature difference is as small as 0.01 mK and the criticdfS- Thus, it appears likely thg6] is incorrect in concluding
wavelength is 1.3 cm fad=0.6 cm, in good agreement with that convection is not responsible for the observed layering.

Table | of[6]. Referencg6] also describes the average layer

width as a function of concentration for 1.09n diameter

polystyrene spheres, with an initially linear vertical concen- ACKNOWLEDGMENTS
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